

Brigham Renal Board Review "Cardiorenal syndrome"

Finnian R. Mc Causland, MBBCh, MMSc, FRCPI
Associate physician
Renal Division, Department of Medicine
Brigham and Women's Hospital
Assistant Professor of Medicine
Harvard Medical School

CONTINUING MEDICAL EDUCATION
DEPARTMENT OF MEDICINE

Finnian Mc Causland, MBBCh, MMSc

- University College Dublin, Ireland
- Medicine Residency @ Mater Misericordiae University Hospital, Dublin, Ireland
- Nephrology Specialist Registrar @ Mater Misericordiae University Hospital, Dublin
- Nephrology Fellowship @BWH/MGH
- Assistant Professor of Medicine@ HMS
- Co-Director, Master of Medical Sciences in Clinical Investigation @ HMS
 - Clinical focus: ESRD
 - Research focus: Cardiovascular disease in CKD

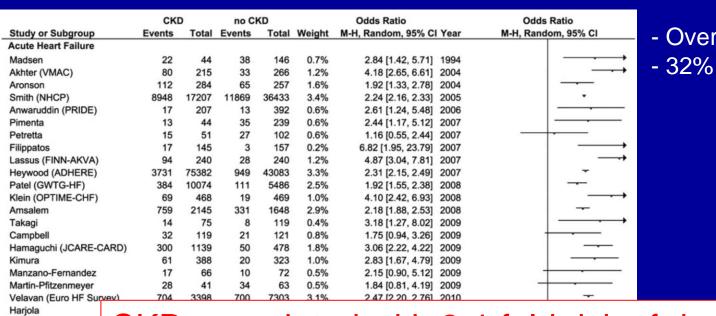
Disclosures

- Research Grants from NIDDK, Lexicon, Novartis, AstraZeneca,
 Satellite Healthcare, and Fifth Eye, paid directly to BWH
- Consulting: GSK, Zydus therapeutics
- Expert Witness: Rubin-Anders Scientific

Outline

- Classification and Epidemiology
- Pathophysiology of CRS 1
- Diagnostic approaches
- Therapeutic approaches
- Summary

Classification (ADQI)


Table 1. Classification of CRS Based on the Consensus Conference of the Acute Dialysis Quality Initiative

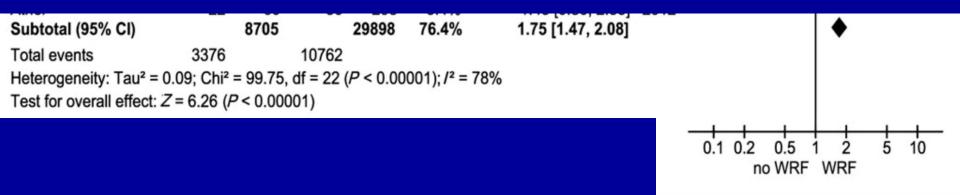
Phenotype	Nomenclature	Description	Clinical Examples
Type 1 CRS	Acute CRS	HF resulting in AKI	ACS resulting in cardiogenic shock and AKI, AHF resulting in AKI
Type 2 CRS	Chronic CRS	Chronic HF resulting in CKD	Chronic HF
Type 3 CRS	Acute renocardiac syndrome	AKI resulting in AHF	HF in the setting of AKI from volume overload, inflammatory surge, and metabolic disturbances in uremia
Type 4 CRS	Chronic renocardiac syndrome	CKD resulting in chronic HF	LVH and HF from CKD-associated cardiomyopathy
Type 5 CRS	Secondary CRS	Systemic process resulting in HF and kidney failure	Amyloidosis, sepsis, cirrhosis

Epidemiology

Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis

Kevin Damman^{1*}, Mattia A.E. Valente¹, Adriaan A. Voors¹, Christopher M. O'Connor², Dirk J. van Veldhuisen¹, and Hans L. Hillege^{1,3}

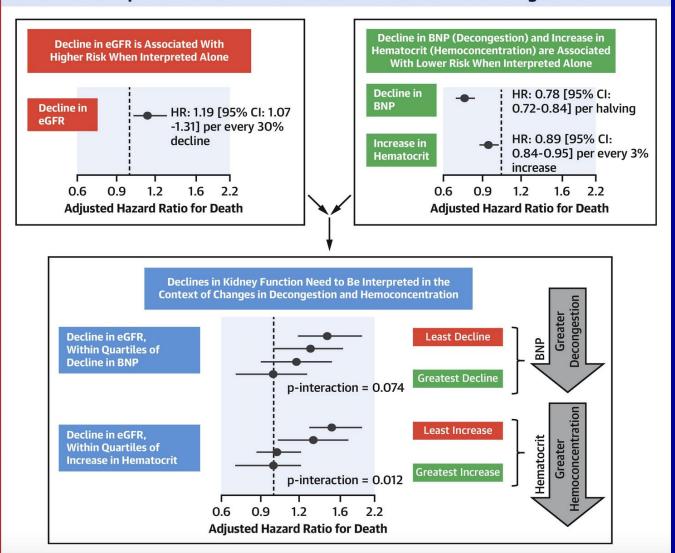
- Over 1 million individuals
- 32% had CKD

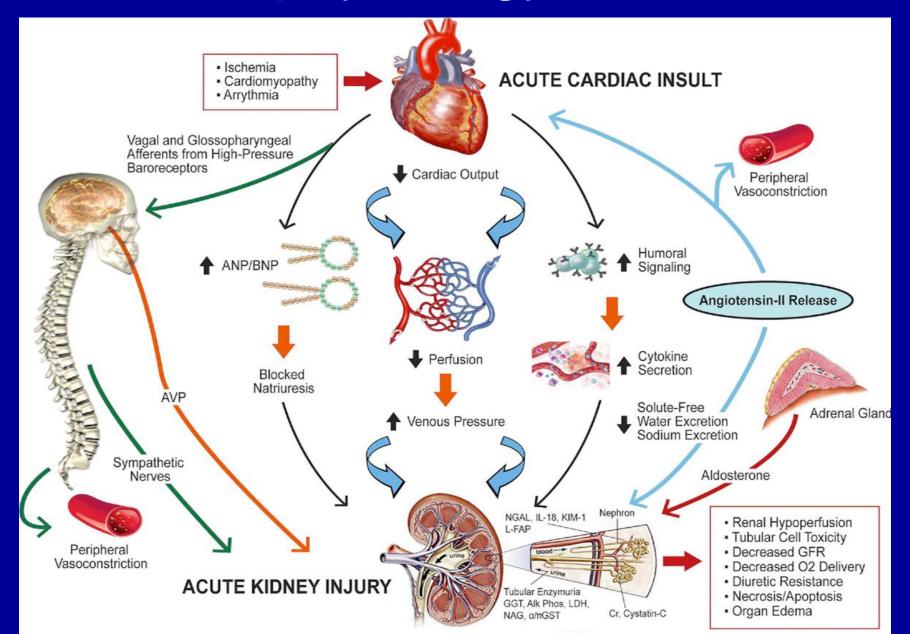

CKD associated with 2.4-fold risk of death in aHF

Manzano - Fernandez Blair (EVEREST) 353 1055 184 966 2.5% 2.14 [1.74, 2.62] 2011 Tarantini (IS-AHF) 592 34 416 1.4% 2.39 [1.59, 3.61] 2011 11847 163402 13383 433054 3.4% 2.45 [2.39, 2.51] 2011 Subtotal (95% CI) 277499 534640 39.5% 2.39 [2.25, 2.54] 27998 28483 Heterogeneity: $Tau^2 = 0.01$; $Chi^2 = 60.36$, df = 26 (P = 0.0001); $I^2 = 57\%$ Test for overall effect: Z = 28.65 (P < 0.00001)

Vaz Perez

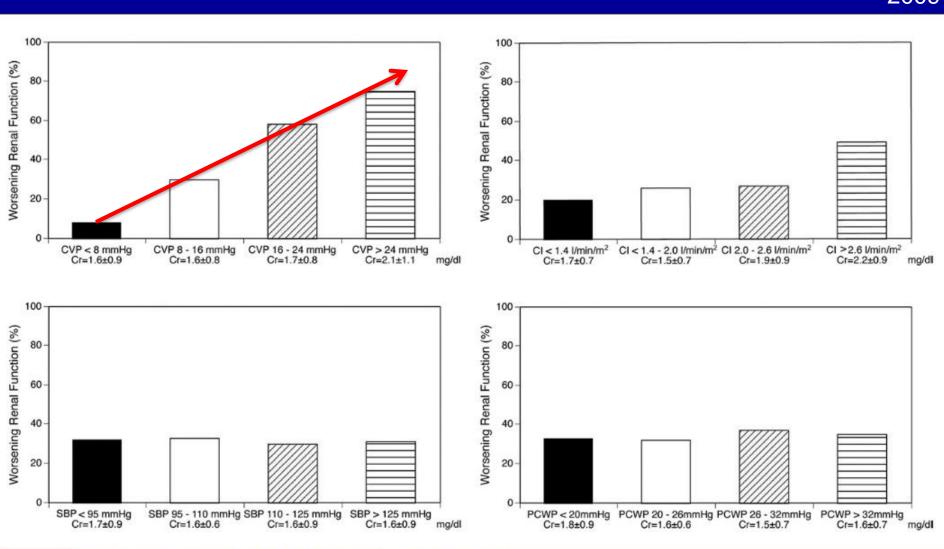
Eur Heart J (2014) 35, 455–469


WRF (SCr 0.3 mg/dL) occurred in 23% of the ~50K patients

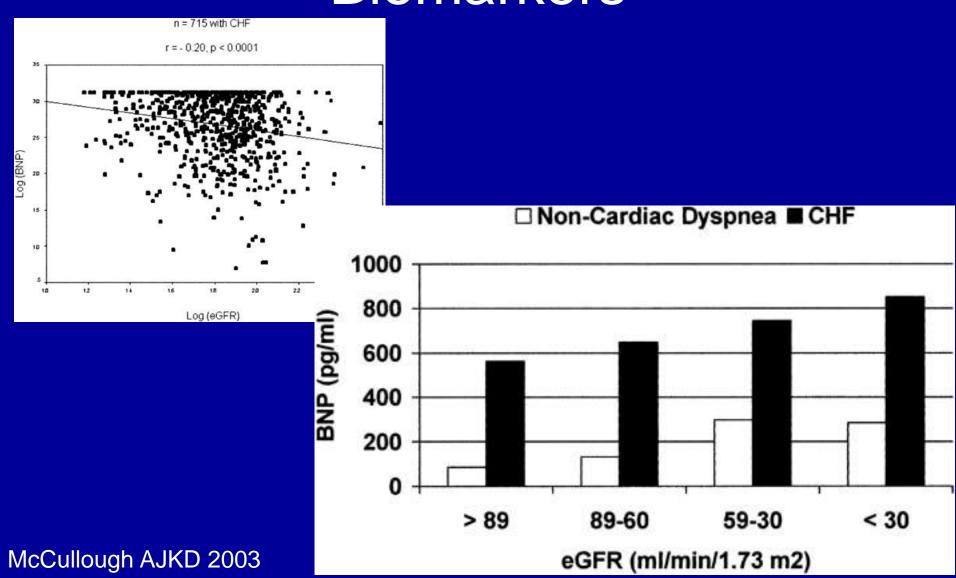

Table 4 Predictors of the occurrence of worsening renal function in meta-analysis across studies								
Predictor	Number of studies	Number of patients	Adjusted HR (95% CI)	P-value				
Baseline CKD ^a	9	5477	2.17 (1.79–2.63)	<0.001				
Hypertension	5	11 611	1.36 (1.08-1.71)	0.009				
Diabetes	5	11 081	1.23 (1.12-1.36)	< 0.001				
Age (per 10 years)	5	9993	1.38 (1.14–1.68)	0.001				
Diuretic use ^b	5	13 502	1.52 (1.07–2.15)	0.02				

Not all WRF is the same

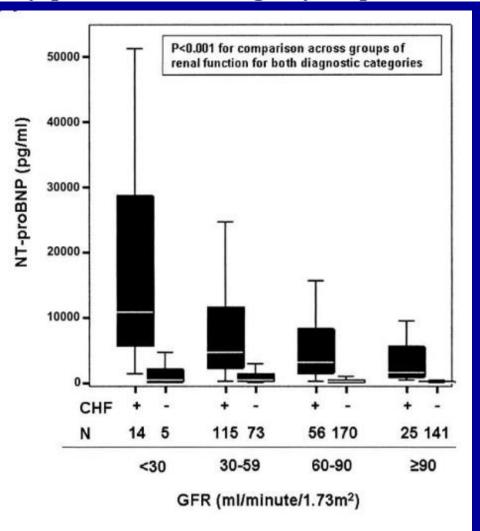
CENTRAL ILLUSTRATION: Hazard Ratios for Death Associated With Decline in eGFR: Interpreted Alone Versus Within the Context of Decongestion

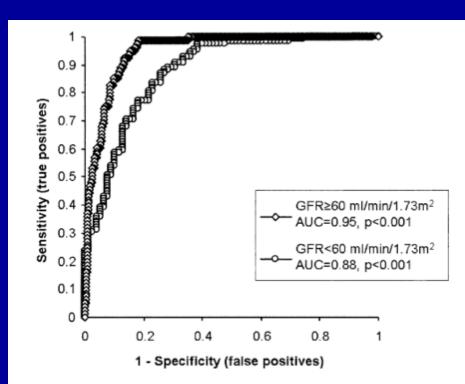

Pathophysiology – CRS 1

Importance of Venous Congestion for Worsening of Renal Function in Advanced Decompensated Heart Failure


2009

Diagnosis


- Biomarkers
 - Cardiac
 - Injury (cTn)
 - Stretch (BNP and NTproBNP)
 - Kidney
 - Glomerular Integrity (CyC, SCr; Albuminuria)
 - Tubular Injury (KIM-1, L-FABP, NGAL, NAG, IL-18...)
- Imaging
 - Cardiac (echo, cardiac MRI)
 - Kidney (U/sound, intra-renal venous flow patterns)
- Volume Status
 - Lung US, IVC diameter, Bioimpedance, intra-abdominal pressure
 - Implantable monitoring devices
 - Invasive haemodynamic monitoring


Interpretation of Cardiac Biomarkers

Renal Function, Congestive Heart Failure, and Amino-Terminal Pro-Brain Natriuretic Peptide Measurement

Results From the ProBNP Investigation of Dyspnea in the Emergency Department (PRIDE) Study

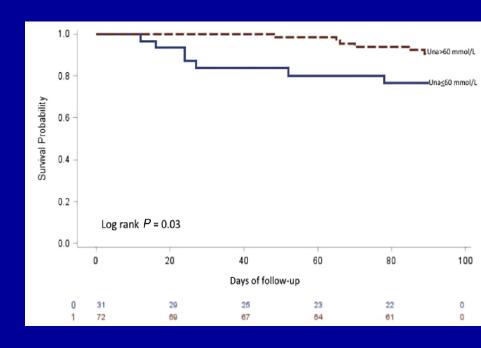
Figure 3. Receiver-operating characteristic curves comparing the performance of amino-terminal pro-brain natriuretic peptide for the diagnosis of acute congestive heart failure in breathless subjects with normal-to-mild renal insufficiency (glomerular filtration rate $[GFR] \ge 60 \text{ ml/min/1.73 m}^2$, n = 393) versus moderate-to-severely impaired renal function (GFR < 60 ml/min/1.73 m², n = 206). The difference between the two curves was not statistically significant (p = 0.34). AUC = area under the curve.

Caveats of Kidney Function Assessment

Creatinine

 Cardiac cachexia may lead to reduced muscle mass

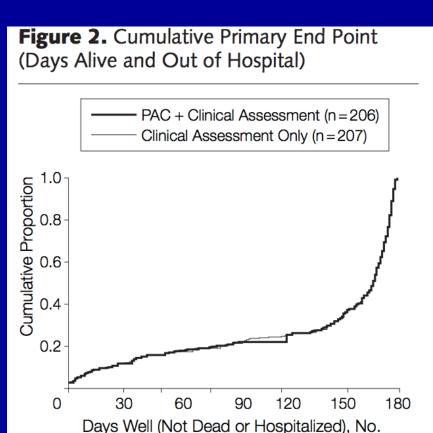
eGFR

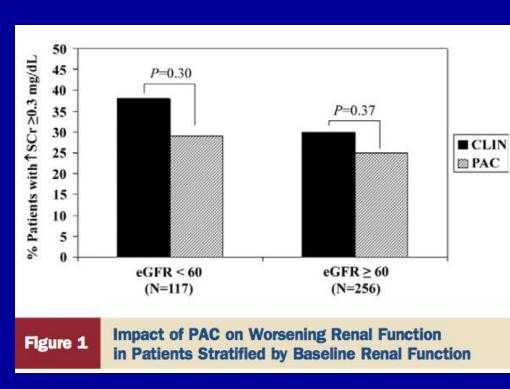

 Estimating equations require stable SCr concentration

Bun/Cr ratio

- Typically associated with 'prerenal' states
- Should not deter initiation of decongestive therapy if needed

Urine Na

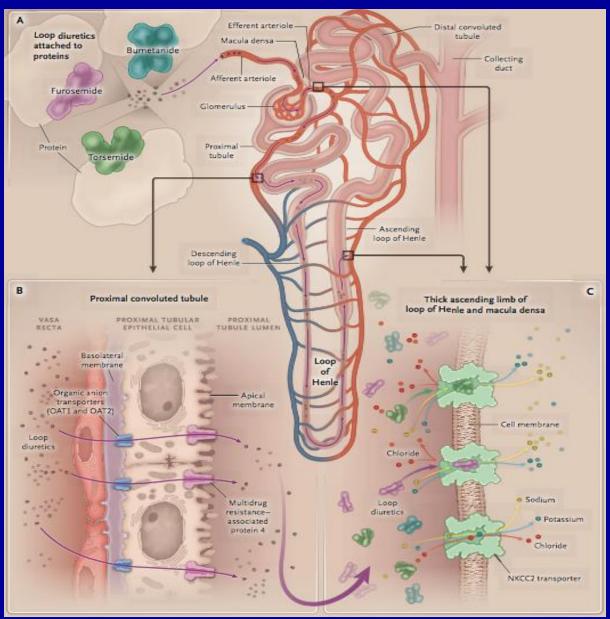

Lower UNa strongly associated with adverse outcomes

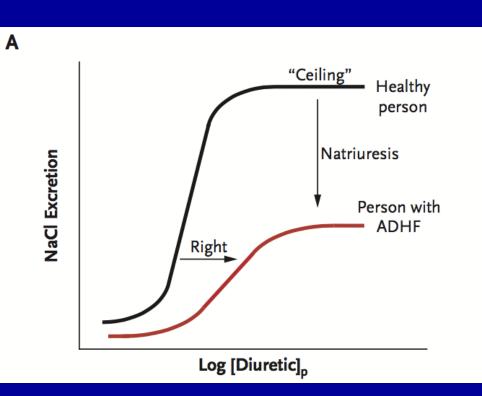


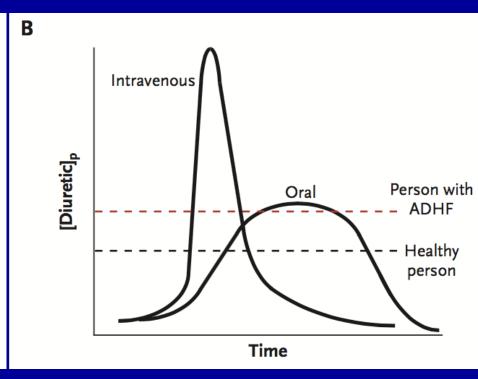
Haemodynamic Assessment

Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness

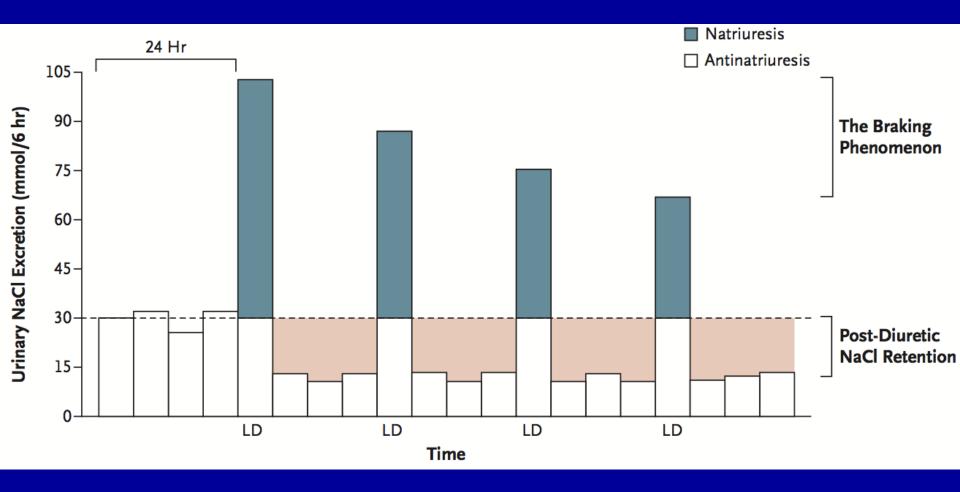
The ESCAPE Trial



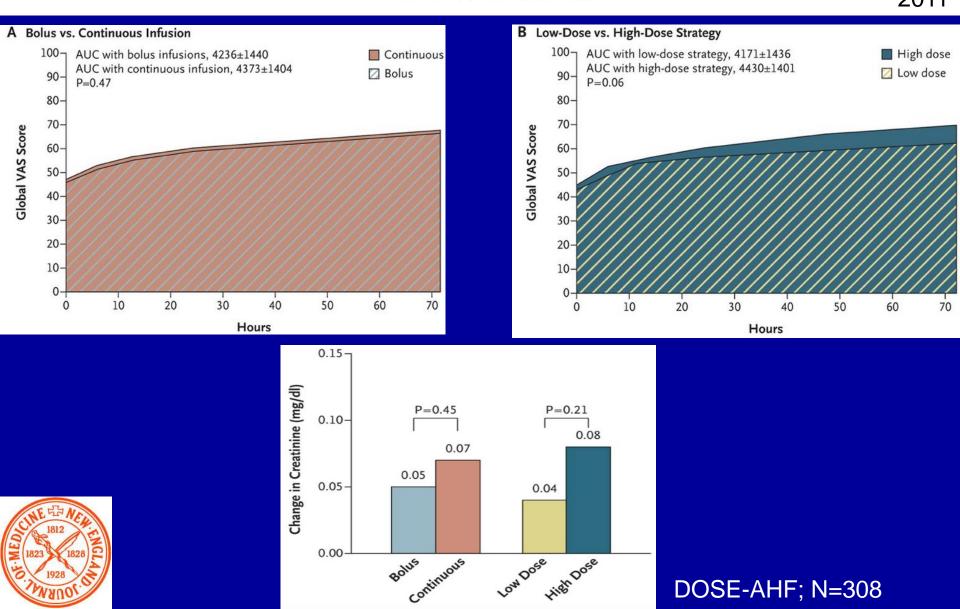

Treatment Strategies


- Decongestion
 - Diuretics
 - Given to around 90% of those with acute HF
 - Class 1 recommendation based on expert opinion alone
 - Ultrafiltration
 - Conflicting results
 - Limited data in CRS 1 suggest no benefit
 - Reduce Intra-abdominal pressure
- Neurohormonal modulation
- Inotropes

Diuretics



Diuretic PK in Heart Failure



Diuretic PK in Heart Failure

Diuretic Strategies in Patients with Acute Decompensated Heart Failure

G. Michael Felker, M.D., M.H.S., Kerry L. Lee, Ph.D., David A. Bull, M.D., Margaret M. Redfield, M.D., Lynne W. Stevenson, M.D., Steven R. Goldsmith, M.D., Martin M. LeWinter, M.D., Anita Deswal, M.D., M.P.H., Jean L. Rouleau, M.D., Elizabeth O. Ofili, M.D., M.P.H., Kevin J. Anstrom, Ph.D., Adrian F. Hernandez, M.D., et al., for the NHLBI Heart Failure Clinical Research Network*

Diuretic Strategies in Patients with Acute Decompensated Heart Failure

G. Michael Felker, M.D., M.H.S., Kerry L. Lee, Ph.D., David A. Bull, M.D., Margaret M. Redfield, M.D., Lynne W. Stevenson, M.D., Steven R. Goldsmith, M.D., Martin M. LeWinter, M.D., Anita Deswal, M.D., M.P.H., Jean L. Rouleau, M.D., Elizabeth O. Ofili, M.D., M.P.H., Kevin J. Anstrom, Ph.D., Adrian F. Hernandez, M.D., et al., for the NHLBI Heart Failure Clinical Research Network*

End Point	Bolus Every 12 Hr (N=156)	Continuous Infusion (N=152)	P Value	Low Dose (N = 151)	High Dose (N=157)	P Value
AUC for dyspnea at 72 hr	4456±1468	4699±1573	0.36	4478±1550	4668±1496	0.04
Freedom from congestion at 72 hr — no./total no. (%)	22/153 (14)	22/144 (15)	0.78	16/143 (11)	28/154 (18)	0.09
Change in weight at 72 hr — Ib	-6.8 ± 7.8	-8.1±10.3	0.20	-6.1±9.5	-8.7±8.5	0.01
Net fluid loss at 72 hr — ml	4237±3208	4249±3104	0.89	3575±2635	4899±3479	0.001
Change in NT-proBNP at 72 hr — pg/ml	-1316±4364	-1773±3828	0.44	-1194±4094	-1882±4105	0.06
Worsening or persistent heart failure — no./total no. (%)	38/154 (25)	34/145 (23)	0.78	38/145 (26)	34/154 (22)	0.40
Treatment failure — no./total no. (%)†	59/155 (38)	57/147 (39)	0.88	54/147 (37)	62/155 (40)	0.56
Increase in creatinine of >0.3 mg/dl within 72 hr — no./total no. (%)	27/155 (17)	28/146 (19)	0.64	20/147 (14)	35/154 (23)	0.04
Length of stay in hospital — days			0.97			0.55
Median	5	5		6	5	
Interquartile range	3–9	3-8		4–9	3–8	
Alive and out of hospital — days			0.36			0.42
Median	51	51		50	52	
Interquartile range	42–55	38-55		39–54	42-56	

Continuous versus bolus intermittent loop diuretic infusion in acutely decompensated heart failure: a prospective randomized trial

Alberto Palazzuoli^{1*}, Marco Pellegrini¹, Gaetano Ruocco¹, Giuseppe Martini¹, Beatrice Franci¹,
Maria Stella Campagna¹, Marilyn Gilleman¹, Ranuccio Nuti¹, Peter A McCullough² and Claudio Ronco³

DIUR-AHF; N=82

Table 3 Co-primary	endpoints	expressed	as	change	from
baseline to discharge	ge in value	S			

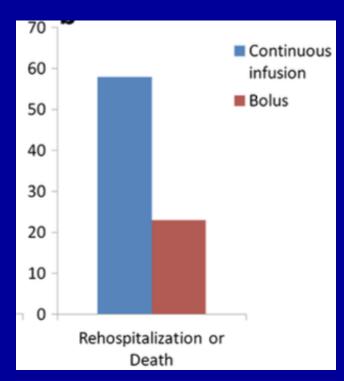
	Confinuous infusion	Bolus	<i>P</i> -value
Δ Serum creatinine (mg/dl)	$+0.8 \pm 0.4$	-0.8 ± 0.3	<0.01
Δ eGFR (mL/min/173 m ²)	-9 ± 7	$+5 \pm 6$	<0.05
Δ BNP (pg/mL)	-576 ± 655	-181 ± 527	0.02

Results are presented as mean \pm SD. Δ : mean change from admission to discharge, Difference; eGFR, estimated glomerular filtration rate; BNP, B-type natriuretic peptide.

Continuous versus bolus intermittent loop diuretic infusion in acutely decompensated heart failure: a prospective randomized trial

Alberto Palazzuoli^{1*}, Marco Pellegrini¹, Gaetano Ruocco¹, Giuseppe Martini¹, Beatrice Franci¹,
Maria Stella Campagna¹, Marilyn Gilleman¹, Ranuccio Nuti¹, Peter A McCullough² and Claudio Ronco³

DIUR-AHF; N=82

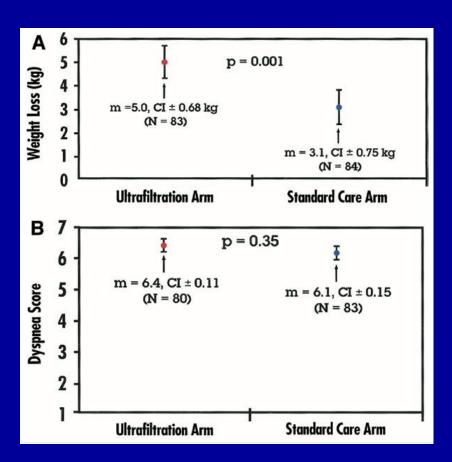

Table 4 Secondary	endpoints	in	the	continuous	infusion
versus bolus arm					

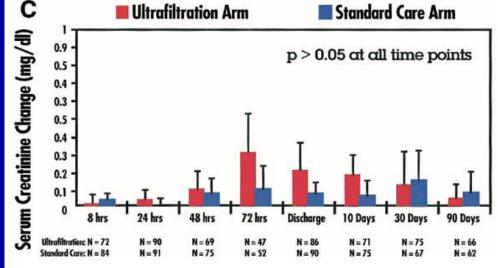
	Continuous infusion	Bolus	<i>P</i> -value
Acute kidney injury	22%	15%	0.30
Hypertonic saline solution	33%	18%	0.01
Inotropes infusion	35%	23%	0.02
Length of hospital stay (days), mean \pm SD	14 ± 5	11 ± 5	<0.03
Death or rehospitalization	58%	23%	0.001
Weight loss (kg), mean \pm SD	-4.1 ± 1,9	-3.5 ± 2.4	0.23

Continuous versus bolus intermittent loop diuretic infusion in acutely decompensated heart failure: a prospective randomized trial

Alberto Palazzuoli^{1*}, Marco Pellegrini¹, Gaetano Ruocco¹, Giuseppe Martini¹, Beatrice Franci¹,
Maria Stella Campagna¹, Marilyn Gilleman¹, Ranuccio Nuti¹, Peter A McCullough² and Claudio Ronco³

DIUR-AHF; N=82

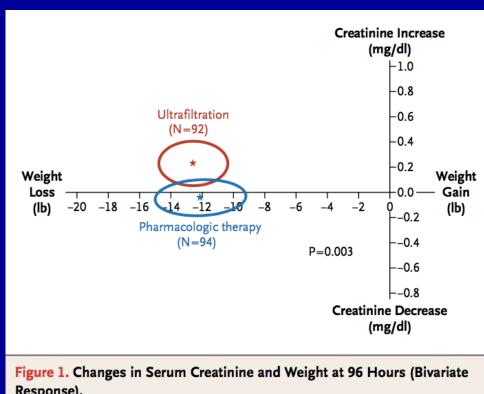



aHR 2.57 (1.01-6.58)

Ultrafiltration

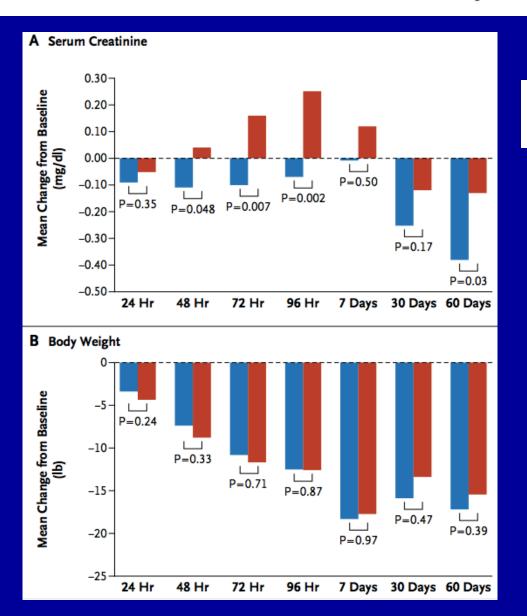
Ultrafiltration Versus Intravenous Diuretics for Patients Hospitalized for Acute Decompensated Heart Failure

Maria Rosa Costanzo, MD, FACC,* Maya E. Guglin, MD, FACC,†
Mitchell T. Saltzberg, MD, FACC,* Mariell L. Jessup, MD, FACC,‡ Bradley A. Bart, MD, FACC,§
John R. Teerlink, MD, FACC,|| Brian E. Jaski, MD, FACC,¶ James C. Fang, MD, FACC,#
Erika D. Feller, MD, FACC,** Garrie J. Haas, MD, FACC,†† Allen S. Anderson, MD, FACC,‡‡
Michael P. Schollmeyer, DVM,§§ Paul A. Sobotka, MD, FACC,§§ for the UNLOAD Trial Investigators



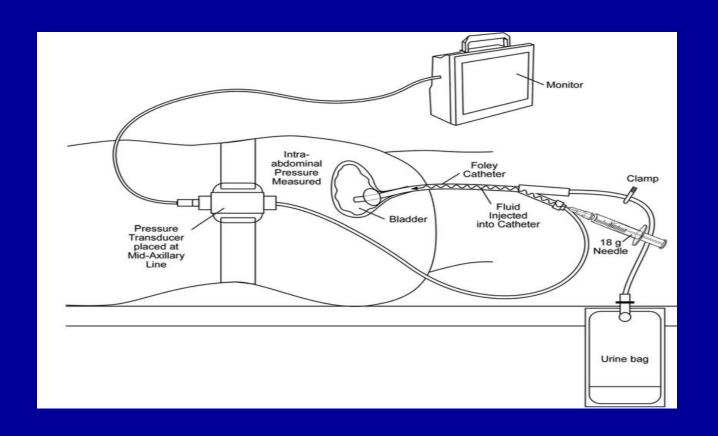
Ultrafiltration in Decompensated Heart Failure with Cardiorenal Syndrome

CARRESS-HF; N=188; 2012

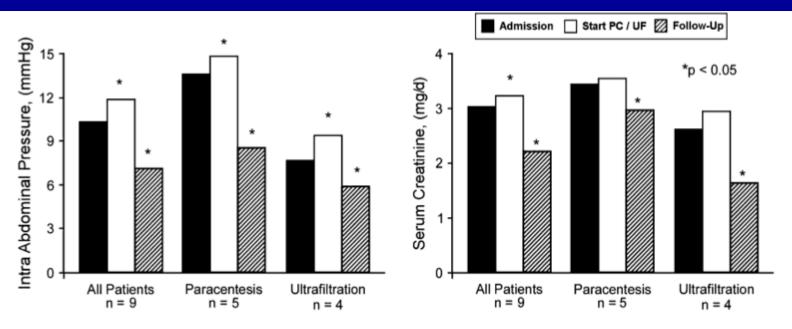

Response).

'Sicker' popn than UNLOAD – Only trial with CRS 1 patients! Fixed UF protocols **UF** group

- Higher SCr at 96 hrs
- More adverse events (72 vs. 53%)



Ultrafiltration in Decompensated Heart Failure with Cardiorenal Syndrome



Ultrafiltration Pharmacological

Intra-abdominal Hypertension

Intra-abdominal Hypertension

Fig. 3. Change in IAP and serum creatinine in patients who underwent paracentesis or ultrafiltration. Note the initial increase in IAP and creatinine during intensive medical therapy. A significant reduction in IAP was only seen 12 hours (follow-up) after starting ultrafiltration or paracentesis, which coincided with a significant improvement in renal function. *PC*, Paracentesis; *UF*, ultrafiltration.

AVP antagonists

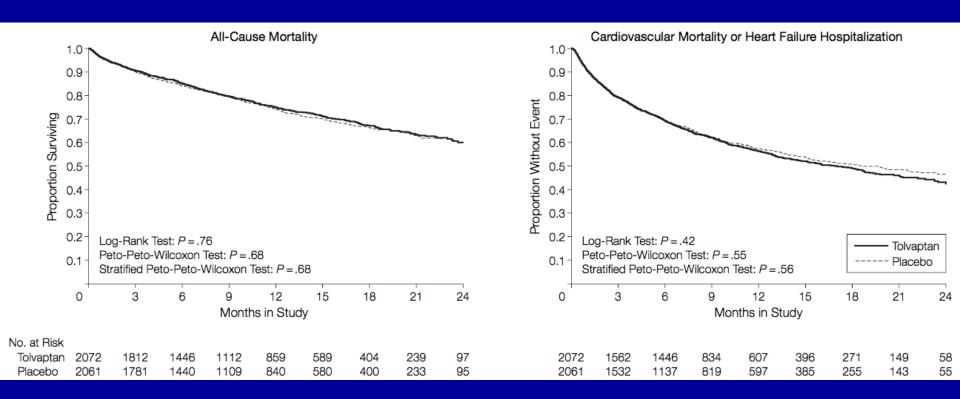
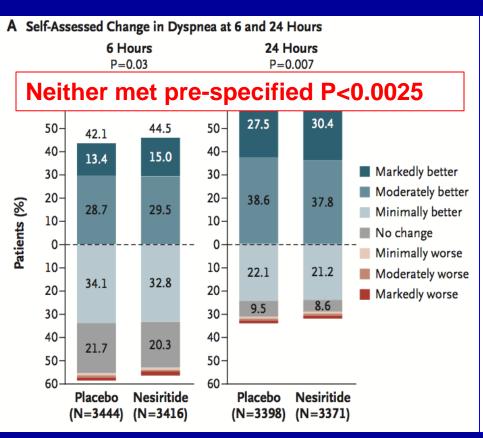
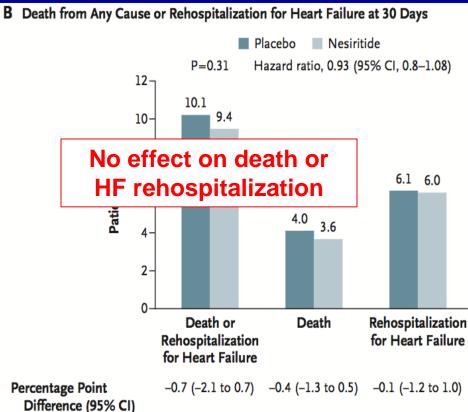

Effects of Oral Tolvaptan in Patients Hospitalized for Worsening Heart Failure The EVEREST Outcome Trial

Table 3. Effects of Tolvaptan on Change From Baseline in Secondary End Points: Body Weight, Patient-Assessed Dyspnea, Serum Sodium Concentration, Edema, and KCCQ Overall Summary Score

			P
	Tolvaptan	Placebo	Value
Change in body weight at 1 day, mean (SD), kg	-1.76 (1.91) [n = 1999]	-0.97 (1.84) [n = 1999)	<.001*
Change in dyspnea at 1 day, % showing improvement in dyspnea score†	74.3 [n = 1835]	68.0 [n = 1829]	<.001‡
Change in serum sodium at 7 days (or discharge if earlier), mean (SD), mEq/L§	5.49 (5.77) [n = 162]	1.85 (5.10) [n = 161]	<.001*
Change in edema at 7 days (or discharge), % showing at least a 2-grade improvement†	73.8 [n = 1600]	70.5 [n = 1595]	.003‡
Change in KCCQ overall summary score at postdischarge week 1, mean (SD)	19.90 (18.71) [n = 872]	18.52 (18.83) [n = 856]	.39*

Effects of Oral Tolvaptan in Patients Hospitalized for Worsening Heart Failure The EVEREST Outcome Trial




Recombinant BNP

Effect of Nesiritide in Patients with Acute Decompensated Heart Failure

ASCEND-HF; N=7141; 2011

Effect of Nesiritide in Patients with Acute Decompensated Heart Failure

N=7141; 2011

Safety end points				
Death from cardiovascular causes — no./total no. (%)	112/3498 (3.2)	124/3509 (3.5)	-0.3 (-1.2 to 0.5)	0.44
Sudden death from cardiac causes — no./total no. (%)	19/3324 (0.6)	16/3327 (0.5)	0.1 (-0.3 to 0.4)	0.61
Hypotension — no./total no. (%)	930/3498 (26.6)	538/3509 (15.3)	11.3 (9.4 to 13.1)	<0.001
Asymptomatic	748/3498 (21.4)	436/3509 (12.4)	9.0 (7.2 to 10.7)	<0.001
Symptomatic	250/3496 (7.2)	141/3509 (4.0)	3.2 (2.1 to 4.2)	<0.001
>25% decrease in estimated GFR from study-drug initiation — no./total no. (%)	1032/3289 (31.4)	968/3278 (29.5)	1.09 (0.98 to 1.21)	0.11
Baseline estimated GFR <60 ml/min/1.73 m ²	484/1714 (28.2)	449/1717 (26.2)	1.11 (0.96 to 1.3)	0.16
Baseline estimated GFR ≥60 ml/min/1.73 m²	548/1575 (34.8)	519/1561 (33.2)	1.07 (0.92 to 1.24)	0.38

Rolofylline, an Adenosine A₁–Receptor Antagonist, in Acute Heart Failure

Enrolled patients with ADHF and renal dysfunction 1° outcome – success/failure/no change in survival, HF status or WRF

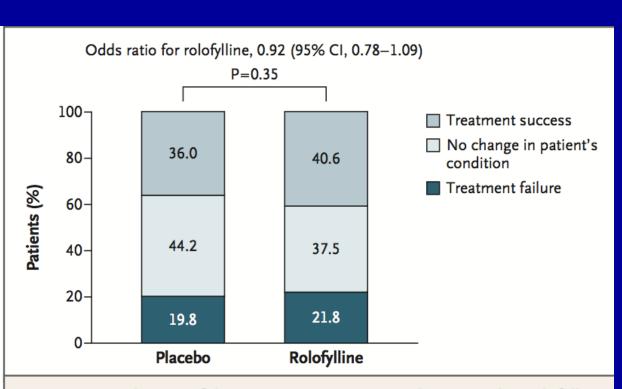


Figure 1. Distribution of the Primary Composite End Point in the Rolofylline and Placebo Groups.

Persistent renal impairment (0.3 SCr from day 0 to 7) developed in 15.0% vs 13.7% (P=0.44)

Effects of Serelaxin in Patients with Acute Heart Failure

M. Metra, J.R. Teerlink, G. Cotter, B.A. Davison, G.M. Felker, G. Filippatos,
B.H. Greenberg, P.S. Pang, P. Ponikowski, A.A. Voors, K.F. Adams, S.D. Anker,
A. Arias-Mendoza, P. Avendaño, F. Bacal, M. Böhm, G. Bortman, J.G.F. Cleland,
A. Cohen-Solal, M.G. Crespo-Leiro, M. Dorobantu, L.E. Echeverría, R. Ferrari,
S. Goland, E. Goncalvesová, A. Goudev, L. Køber, J. Lema-Osores, P.D. Levy,
K. McDonald, P. Manga, B. Merkely, C. Mueller, B. Pieske, J. Silva-Cardoso,
J. Špinar, I. Squire, J. Stępińska, W. Van Mieghem, D. von Lewinski, G. Wikström,
M.B. Yilmaz, N. Hagner, T. Holbro, T.A. Hua,* S.V. Sabarwal, T. Severin,
P. Szecsödy, and C. Gimpelewicz, for the RELAX-AHF-2 Committees Investigators†

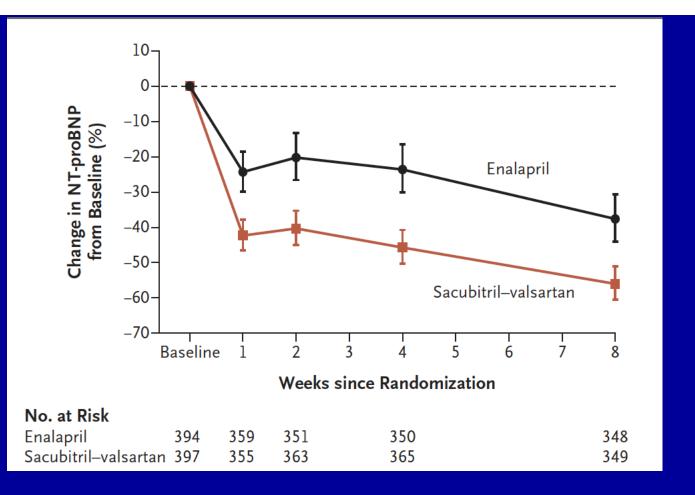

Effects of Serelaxin in Patients with Acute Heart Failure

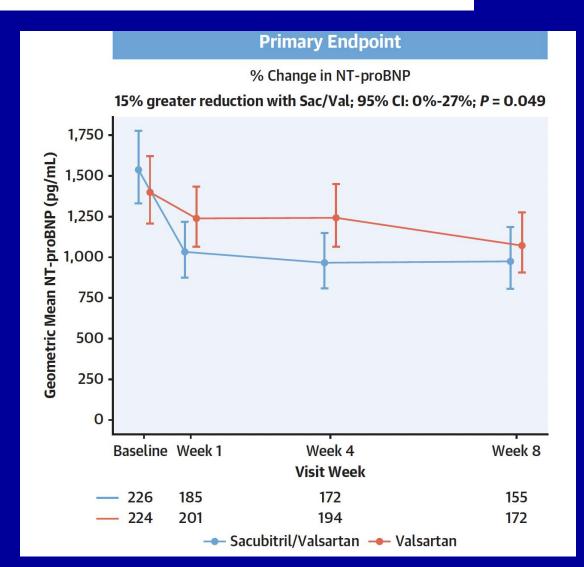
Table 2. Protocol-Specified Efficacy End Points.				
End Point	Serelaxin Group (N=3274)	Placebo Group (N=3271)	Hazard Ratio or Mean Difference (95% CI)*	P Value
Primary efficacy end points — no. (%)				
Death from cardiovascular causes at 180 days	285 (8.7)	290 (8.9)	0.98 (0.83 to 1.15)	0.77†
Worsening heart failure at 5 days	227 (6.9)	252 (7.7)	0.89 (0.75 to 1.07)	0.19‡
Key secondary efficacy end points				
Death from any cause at 180 days — no. (%)	367 (11.2)	388 (11.9)	0.94 (0.81 to 1.08)	
Median length of index hospital stay (IQR) — days∫	6.8 (5.0 to 10.0)	6.9 (5.0 to 10.0)	-0.183 (-0.645 to 0.280)¶	
Composite of death from cardiovascular causes or rehospitalization for heart failure or renal failure at 180 days — no. (%)	794 (24.3)	813 (24.9)	0.97 (0.88 to 1.07)	
Death from cardiovascular causes	285 (8.7)	290 (8.9)	0.98 (0.83 to 1.15)	
Rehospitalization for heart failure or renal failure	604 (18.4)	632 (19.3)	0.95 (0.85 to 1.06)	

Angiotensin/Neprilysin Inhibition

Angiotensin–Neprilysin Inhibition in Acute Decompensated Heart Failure

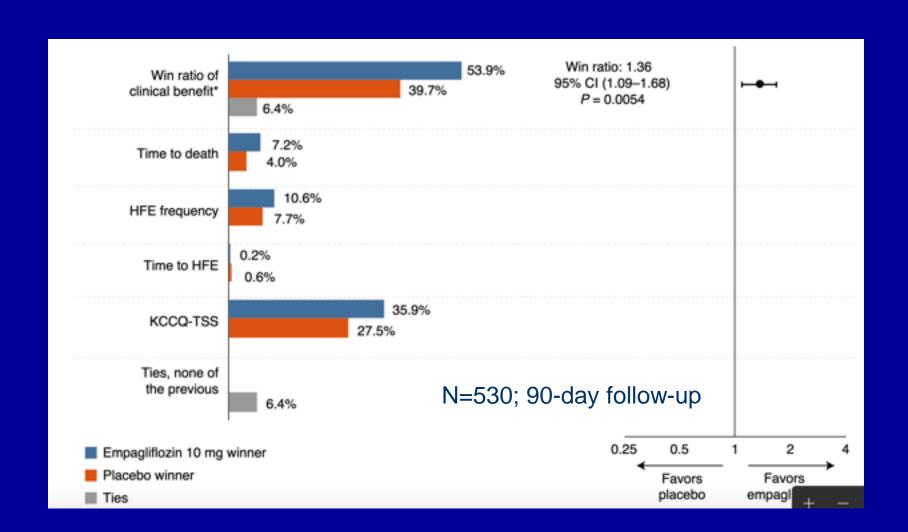
Eric J. Velazquez, M.D., David A. Morrow, M.D., M.P.H.,
Adam D. DeVore, M.D., M.H.S., Carol I. Duffy, D.O., Andrew P. Ambrosy, M.D.,
Kevin McCague, M.A., Ricardo Rocha, M.D., and Eugene Braunwald, M.D.,
for the PIONEER-HF Investigators*

N=881


-47% vs -25%

Ratio of change: 0.71 (0.63 to 0.81)

Angiotensin-Neprilysin Inhibition in Patients With Mildly Reduced or Preserved Ejection Fraction and Worsening Heart Failure



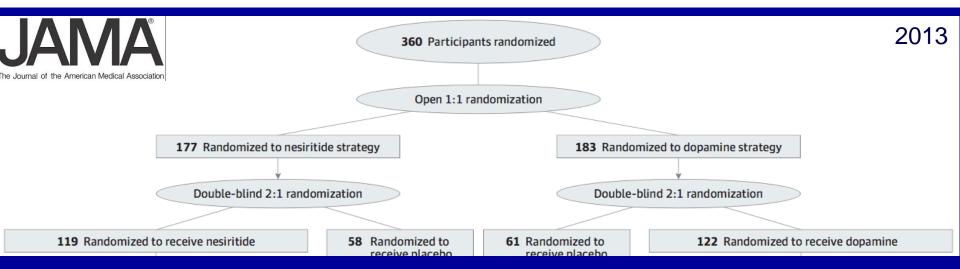
July 2023

The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: a mature multinational randomized trial

Inotropes

Meta-Analysis: Low-Dose Dopamine Increases Urine Output but Does Not Prevent Renal Dysfunction or Death

Jan O. Friedrich, MD, DPhil; Neill Adhikari, MD, CM; Margaret S. Herridge, MD, MPH; and Joseph Beyene, PhD


Table 2. Effect of Low-Dose Dopamine on Clinical and Renal Outcomes

Outcome	Trials (Patients) with Outcomes Data, n (n)*	Treatment Effect (95% CI)†	P Value	Homogeneity‡	
	Outcomes Data, II (II)			I ² Statistic, %	P Value
Mortality	15 (1387)	Relative risk, 0.96 (0.78-1.19)	>0.2	0	>0.2
Need for renal replacement therapy	12 (1216)	Relative risk, 0.93 (0.76-1.15)	>0.2	0	>0.2
Adverse effects	18 (1660)	Relative risk, 1.13 (0.90-1.41)	>0.2	6	>0.2
Urine output (day 1)	33 (1654)	Ratio of means, 1.24 (1.14-1.35)	< 0.001	77	< 0.001
Urine output (day 2)	17 (723)	Ratio of means, 1.09 (0.99-1.20)	0.07	75	< 0.001
Urine output (day 3)	8 (326)	Ratio of means, 1.02 (0.87-1.20)	>0.2	85	< 0.001
Creatinine level (day 1)	32 (1807)	Ratio of means, 0.96 (0.93-0.99)	0.01	73	< 0.001
Creatinine level (day 2)	26 (1301)	Ratio of means, 0.99 (0.92-1.08)	>0.2	92	< 0.001
Creatinine level (day 3)	15 (741)	Ratio of means, 0.97 (0.88-1.07)	>0.2	94	< 0.001
Creatinine clearance (day 1)	22 (1077)	Ratio of means, 1.06 (1.01-1.11)	0.02	0	>0.2
Creatinine clearance (day 2)	12 (580)	Ratio of means, 1.02 (0.90-1.15)	>0.2	54	< 0.01
Creatinine clearance (day 3)	8 (339)	Ratio of means, 1.09 (0.96-1.24)	0.18	36	0.14

None of these studies included participants with CRS 1

Low-Dose Dopamine or Low-Dose Nesiritide in Acute Heart Failure With Renal Dysfunction The ROSE Acute Heart Failure Randomized Trial

Low-Dose Dopamine or Low-Dose Nesiritide in Acute Heart Failure With Renal Dysfunction The ROSE Acute Heart Failure Randomized Trial

Table 2. Coprimary End Points: Effect of Low-Dose Dopamine vs Placebo or Low-Dose Nesiritide vs Placebo on Cumulative Urine Volume During 72 Hours and Change in Cystatin C Level From Baseline to 72 Hours

	Mean (95% CI)			
	Placebo	Drug	Treatment Difference	P Value
Dopamine strategy	Placebo (n = 119)	Dopamine (n = 122)		
Cumulative urine volume from randomization to 72 h, mL	8296 (7762 to 8830)	8524 (7917 to 9131)	229 (-714 to 1171)	.59
Change in cystatin C level from randomization to 72 h, mg/L	0.11 (0.06 to 0.16)	0.12 (0.06 to 0.18)	0.01 (-0.08 to 0.10)	.72
Nesiritide strategy	Placebo (n = 119)	Nesiritide (n = 119)		
Cumulative urine volume from randomization to 72 h, mL	8296 (7762 to 8830)	8574 (8014 to 9134)	279 (-618 to 1176)	.49
Change in cystatin C level from randomization to 72 h, mg/L	0.11 (0.06 to 0.16)	0.07 (0.01 to 0.13)	-0.04 (-0.13 to 0.05)	.36

No significant difference in either decongestion or renal endpoint

Summary

- Diagnosis of Cardiorenal Syndrome is challenging
- Classifications are a start, but should not detract from the need to identify the underlying pathophysiology
- Decongestion is a key strategy for patients with CRS 1
- Distinguishing true AKI from functional changes in SCr in setting of diuresis is critical for delivery of goal-directed therapies
- Overcoming diuretic resistance requires focused research effort
- Still a paucity of proven beneficial therapies

Suggested Reading

- Cardiorenal Syndrome: Classification, Pathophysiology, Diagnosis, and Treatment Strategies: A Scientific Statement From the American Heart Association. Rangaswami et al. Circulation 2019 Apr 16;139(16):e840-e878
- Diuretic Treatment in Heart Failure. Ellison DH, Felker GM. N Engl J Med. 2017 Nov 16;377(20):1964-1975
- Cardiorenal Syndrome: An Overview. Ronco C, Bellasi A, Di Lullo L. Adv Chronic Kidney Dis. 2018 Sep;25(5):382-390.

Disclosures

- Research Grants from Satellite Healthcare, Advanced Medical, and Fifth Eye, paid directly to BWH
- Consulting: Advanced Medical and GSK